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A framework for a consistent description of the flow-induced correlation effects within a linear polymer
chain in a melt is proposed. The formalism shows how correlations between chain segments in the flow can be
incorporated into a hierarchy of distribution functions for tangent vectors. The present model allows one to take
into account all the major relaxation mechanisms. Special cases of the derived set of equations are shown to
yield existing models and shed some light on the connection between them. Consequences of several assump-
tions widely used in the literature are analyzed within the developed framework.
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I. INTRODUCTION

The rheological properties of monodisperse high-
molecular-weight polymer melts have received a lot of atten-
tion �1–3�. From the theoretical side, one of the most impor-
tant achievements in this area is the reptation model
proposed more than three decades ago �4�, which visualizes
microscopic motion of a chain in a melt surprisingly well.
This relatively simple picture of molecular relaxation served
as a basis for the Doi-Edwards �DE� model �2�. The latter,
given its simplicity, describes both the linear and shear thin-
ning flow regimes quite successfully. One of its central as-
sumptions is the existence of an effective tube around a test
chain in a polymer melt: a tube comprises all the obstacles—
entanglements—imposed by the surrounding chains and re-
stricts the molecular motion to one-dimensional diffusion,
which is taken as the major relaxation mechanism.

Despite all its successes, the DE theory failed to repro-
duce certain rheological properties of melts. In turn, modifi-
cations of the original theory have been proposed to remove
some of its shortcomings: contour length fluctuations have
been introduced �5,6� to explain the 3.4 power law observed
for the molecular weight dependence of the zero shear rate
viscosity; chain stretch and constraint release have been in-
corporated �7–9� in order to improve the predictions for fast
flows. Among these improvements, the constraint release
�CR� relaxation mechanism is conceptually very important,
because it allows motion of the chain segments “perpendicu-
lar” to the tube if one or more entanglements are removed.
CR arising from the thermal motion of the surrounding
chains was mentioned by Doi and Edwards, but its effect was
estimated to be negligible in monodisperse system. However,
as first described by Marrucci �8�, another type of CR occurs
in flowing melts. The tube is affinely deformed by the flow,
but the chain itself tends to retain its original length by con-
tinually retracting within the tube. While slipping along it-
self, it may release some constraints on the chains around it,
which, in turn, get more freedom to move. This relaxation
mechanism, convective CR �CCR�, is very important for the
nonlinear response of polymer melts: one of its great suc-
cesses is the elimination of the unphysical maximum in the
stress-rate curves predicted by DE.

Following these ideas and taking into account the relax-
ation mechanisms mentioned above, several nonlinear con-
stitutive models have been formulated independently from
each other. The ones by Ianniruberto and Marrucci �10� and
Mead et al. �11� are based on a formalism for a single-chain
orientation tensor and tube survival probability function, re-
spectively, and prescribe how the terminal relaxation time
should be adjusted to take the CCR into account. Alterna-
tively, more sophisticated constitutive models originate from
the McLeish’s group �12–14�: an approach based on a so-
called tangent vector correlation function is proposed. Unfor-
tunately, the connection between these theories is poorly es-
tablished. While based on very similar ideas and giving
predictions which are quite close to each other, they differ
considerably in the mathematical formalism used. Besides
that, each of the models contains some specific assumptions
which often cannot be verified within that model itself. Thus,
there is a need for a theory in which these assumptions either
are not present or can be verified.

One of the important assumptions introduced by DE and
then widely used in the literature �2,7–11,15� is the one about
the independent orientation of the chain segments even in the
presence of flow �2�. At the same time, one of the known
flaws of the DE relaxation model is that it predicts the stress
to be a decreasing function of the rate in fast flows—
behavior never observed in experiments. This artifact of the
theory appears because reptation alone is not effective
enough to relax the stress in fast flows. Therefore, in the DE
theory, chains become strongly aligned in the flow direction
and the melt viscosity drops catastrophically. Introducing
CCR helps to “misalign” the chains and avoid this effect,
although, as, e.g., a calculation of the extinction angle �11�
shows, polymer molecules are still oriented quite strongly.
Hence, the hypothesis about independent orientation of dif-
ferent segments along the tube holds in equilibrium �without
flow� but certainly breaks down under flow conditions, be-
cause of the alignment mentioned above. How to get rid of
this inconsistency and avoid the unnecessary and question-
able assumptions is one of the questions we strive to answer
in the present work.
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The main goal of this work is to build up a microscopic
framework incorporating some of the existing theories of
nonlinear polymer dynamics and, at least in principle, allow-
ing for a more detailed description. In the next section, we
start from a generalization of the DE theory based on a many
point distribution function �16�. We restrict ourselves to in-
extensible chains, and we will try to avoid introducing any
additional hypothesis concerning correlations in orientation
of the segments in the derivation of the model. After the
master set of equations has been derived, we focus on the
analysis of some special cases that lead to already existing
theories. This allows us to clarify the relation between them
as well as discuss the influence of various assumptions on
the final predictions.

II. MANY-POINT DISTRIBUTION FUNCTION

In the framework of the tube model �2,3�, a linear poly-
mer chain in a melt is described in terms of a primitive path,
which is the shortest line connecting the chain’s ends and
having the same topology as the chain itself. The motion of
the primitive path is highly restricted due to presence of the
surrounding chains, which create constraints called entangle-
ments and build up an effective tube around the test chain. In
what follows, we assume the primitive path to have constant
length L: this restricts the formalism to the moderate-flow
regime with a typical rate lower than the inverse Rouse
�length relaxation� time of the chain.

The primitive path trajectory is completely described by

the function R̂�s , t�, which gives the spatial position of the
point s along the path at the time t �here and further on all the
microscopic stochastic quantities are denoted by a caret�. We
choose the origin of the curvilinear coordinate s in the
middle of the path so that −L /2�s�L /2 and s= ±L /2 cor-
respond to the chain’s ends, Fig: 1. However, it is more con-

venient to work with the tangent vector û�s , t���R̂ /�s. E.g.,
in the original DE theory, the microscopic description of the
primitive path dynamics is based upon a stochastic equation
for û�s , t� �see �2�, p. 276, for the derivation�:

û�s,t + �t� = û�s + ��,t� + �t�K · û�s,t�

+
�

�s�û�s,t��
0

s

dx�̂�x,t�	
 . �1�

Each term in Eq. �1� represents a certain type of motion of
the path inside its tube. The simplest of these is convection—
the deformation of the tube by the flow applied with the

velocity gradient tensor K��v. It deforms the tube affinely
and gives rise to the first term in the square brackets. Be-
cause the chain strives to preserve its length, it retracts inside
the tube. As can be shown, the retraction yields the last term

in Eq. �1� with the retraction rate �̂=−K : ûû fixed by the
constant contour length condition. Finally, the one-
dimensional diffusion of the entire chain along its own
contour—reptation—is responsible for the �� term on the
right-hand side �RHS� of Eq. �1�. This is the key ingredient
in the consideration by �2�: it allows the chain to escape its
deformed tube and relax the stress. Mathematically, the dis-
placement �� of the path due to reptation is expressed as a
zero-mean Gaussian noise term with ���2�=2Dc�t, where
the one-dimensional diffusivity Dc is related to the disen-
gagement time �d—the characteristic time needed to escape
from the original tube—via Dc=L2 / ��2�d�.

In practice, all the quantities of interest can be expressed
in terms of averages of û�s , t�. For instance, the orientation
tensor S�s , t� defined as S�s , t�= �û�s , t�û�s , t�� is the second
moment of û with respect to averaging over the ensemble of
chains. The polymeric contribution to the stress tensor is in
its turn expressed in terms of S:

��t� =
G0

L
�

−L/2

L/2

dsS�s,t� , �2�

where G0 is the elastic modulus �2�. More complex charac-
teristics, such as a single-chain structure factor S�q , t� mea-
sured in neutron scattering experiments �17�, can be mapped
to the second moments of û as well:

S�q,t� = �
−L/2

L/2

ds�
−L/2

L/2

ds�

�exp�− 

�,	

q�q	

2
�

s

s�
ds1�

s

s�
ds2�û��s1,t�û	�s2,t��	 .

�3�

In principle, the equations for the averages present in Eqs.
�2� and �3� can be obtained directly from the stochastic equa-
tion �1�. However, in many cases, it turns out to be more
convenient to derive an equation for the distribution function
f�u ,s ; t� defined in �2� via the identity

f�u,s;t� = �
�u − û�s,t��� . �4�

The function f gives the probability to find the tangent vector
û�s , t� in the direction u in a thermodynamically large en-
semble of chains. In Eq. �4� the angular brackets denote the
ensemble average and 
 is the Dirac delta function.

Here we shall not repeat the derivation by Doi and Ed-
wards but only emphasize one of its important shortcomings.
Assuming that the dynamics of a primitive path is described
by only one function f�u ,s ; t�, they totally ignore any pos-
sible correlations along the chain so that the segments s1 and
s2 are claimed to be completely independent. This statement
is well justified in equilibrium but is quite doubtful in the
presence of flow �16�. Indeed, a strong, or even moderate,
flow forces the chains to align along the flow lines. Appar-
ently, this alignment creates correlations in the orientation of

FIG. 1. A primitive path of the length L �solid line� in its
tube.
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different segments. Moreover, the DE model itself predicts
catastrophic alignment of polymer chains in a flow faster
than 1/�d—e.g., the extinction angle predicted becomes very
small in strong flows. In view of such inconsistency, there is
a need for a theory in which the assumption about the ab-
sence of any correlations is not made or can be checked
afterwards. It is the primary goal of this section to develop a
microscopic approach generalizing the DE formalism which
is free of the speculations concerning independence in the
orientation of chain segments in a flow.

A. Generalization of the Doi-Edwards formalism

To generalize the DE approach, we introduce a hierarchy
of distribution functions Fn�u1 ,s1 , . . . ,un ,sn ; t�, n=1,2 , . . .,
each giving the probability that an individual chain, observed
at moment t, has tangent vectors ui at positions si, i
=1, . . . ,n. Apparently, an identity analogous to Eq. �4� holds,

Fn�u1,s1, . . . ,un,sn;t� =��
i=1

n


„ui − û�si,t�…� , �5�

and allows one to derive a deterministic equation for Fn
based on the stochastic equation �1�. Note that the “one-
point” function F1�u ,s ; t� corresponds to the DE probability
distribution function introduced in Eq. �4�.

To proceed, we consider Eq. �5� at the moment t+�t, use
û�s , t+�t� from Eq. �1�, and perform an expansion up to
linear terms in �t. This gives

Fn�u1,s1, . . . ,un,sn;t + �t� =��
i=1

n


„ui − û�si + ��,t�…�
− �t


i=1

n

�Pi + Qi� . �6�

Here we used the following notations:

Pi =�� �
j=1,j�i

n


„u j − û�sj�…�K:û�si�
�

�ui

„ui − û�si�…�

=
�

�ui
·�K · û�si��

j=1

n


„u j − û�sj�…�
=

�

�ui
· �K · uiFn�u1,s1, . . . ,un,sn;t�� �7�

and

Qi =�� �
j=1,j�i

n


„u j − û�sj�…� �

�si
�û�si��

0

si

dx�̂�x�	
�

�

�ui

„ui − û�si�…�

= − �K:uiui�Fn −
�

�ui
· �ui�K:uiui�Fn�

−
�

�si
���

j=1

n


„u j − û�sj�…��
0

si

dx�̂�x�� , �8�

where, for the sake of shortness, the time argument of û�s , t�
is omitted. Finally, the first �reptation� term on the RHS of
Eq. �6� yields

��
i=1

n


„ui − û�si + ��,t�…� = Fn + �tDc�

i=1

n
�

�si
	2

Fn,

�9�

where an expansion in �� has been performed and the iden-
tity ���2�=2Dc�t has been used.

In essence, the above derivation follows the lines of the
original one by �2� although the algebra is somewhat
more involved. The last term in Eq. �8� can be written
in a more convenient way. First, let us recall that

�̂�x , t�=−K : û�x , t�û�x , t�. Then, this term takes the form

− 

i=1

n
�

�si
���

j=1

n


„u j − û�sj�…��
0

si

dxK:û�x�û�x��
= − 


i=1

n
�

�si
�

0

si

dx� dv�
„v − û�x�…

���
j=1

n


„u j − û�sj�…�K:vv�
= − 


i=1

n
�

�si
�

0

si

dx� dvFn+1�u1,s1, . . . ,un,sn,v,x;t�

�K:vv . �10�

Hence, the resulting equation for the probability distribution
function is given by

�Fn

�t
= Dc�


i=1

n
�

�si
	2

Fn + 

i=1

n

�K:uiui�Fn

+ 

i=1

n
�

�ui
· �ui�K:uiui�Fn − K · uiFn�

− 

i=1

n
�

�si
�

0

si

dx� dv�K:vv�Fn+1�u1,s1, . . . ,un,sn,v,x;t� ,

�11�

where the arguments of Fn�u1 ,s1 , . . . ,un ,sn ; t� are omitted
for shortness.

The above-derived equation for Fn is a deterministic
equation. In its derivation no additional assumption has been
made, so the result �11� is exact in the framework of Eq. �1�.
An important feature of Eq. �11� is that the evaluation of the
n-point probability distribution function requires knowledge
of the higher-order function Fn+1: this situation is typical for
the systems involving many-particle interactions and is en-
countered, e.g., in the statistical theory of simple fluids
�Bogoliubov-Born-Green-Kirkwood-Yvon �BBGKY� equa-
tions; see �18��. As will be shown further on, the DE equa-
tion for the one-point distribution function F1�u ,s ; t� follows
from Eq. �11� as a result of a certain approximation for F2.
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The molecular relaxation processes behind the set �11� are
the same as for Eq. �1�: they include reptation and retraction.
As discussed in the Introduction, this picture still lacks an
important ingredient responsible for the relaxation of poly-
mer chains in relatively fast flows with rates larger than
1/�d—convective constraint release.

B. Constraint release

Up to this point we assumed a chain to relax in a fixed
environment and neglected all the changes the tube under-
goes due to the motion of the polymer chains surrounding
the test chain. A consequence of such a simplification is that
only longitudinal motion of a chain in its tube has been taken
into account. However, the entanglement constraints building
up the tube disappear and reappear in time, resulting in so-
called constraint release. A distinctive feature of this relax-
ation mechanism is that it allows for a lateral motion of the
test chain.

In slow flow, the CR is relatively weak—entanglements
are released mainly due to reptation of the chains constitut-
ing the tube—i.e., with the frequency WTCR of the order of
1 /�d. This process is generally called thermal constraint re-
lease. In somewhat faster flows, typically with rates beyond
1/�d, another type of CR—convective constraint release—
comes into play. CCR has its origin in the retraction of the
surrounding chains and, as far as the retraction rate is pro-
portional to the flow rate, the frequency of CCR events in-
creases for stronger flows. This makes CCR a major relax-
ation mechanism in the nonlinear flow regime.

There have been several attempts to incorporate �C�CR
into a constitutive model �8–15�. Here we follow the ap-
proach by Likhtman et al. �12�, who treated a CR event as a
random hop of a tube segment. Each hop allows the tube
segment to move a distance of the order of tube diameter a.
Because the frequency W of CR events is the same along the
whole tube, this motion can be described as a Rouse-like
process. Over a small interval of time �t, it leads to a change
in the position of the segment s given by �13�

��R̂�s,t��CR = �t�3

2
Wa2�2R̂�s,t�

�s2 + ĝ�s,t�
 , �12�

where ĝ is a zero-mean Gaussian force driving the system
towards equilibrium, �ĝ��s1 , t1�ĝ	�s2 , t2��=Wa3
�s1

−s2�
�	
�t1− t2�. In our formalism, however, we need to re-
write Eq. �12� in terms of û�s , t�. Then, a “random torque”
m̂�s , t�, which is proportional to the difference between the
forces that act “at the ends” of the segment s, should be used
instead of the random force ĝ:

��û�s,t��CR = �t�3

2
Wa2�2û�s,t�

�s2 + m̂�s,t�
 . �13�

Here m̂, being a difference of two Gaussian forces, is a
Gaussian noise with �m̂��s1 , t1�m̂	�s2 , t2��=Wa
�s1

−s2�
�	
�t1− t2�. This contribution �13� should be added to
Eq. �1�. Following the same procedure as in Sec. II A, one
obtains for the correction in Eq. �11� from the first term in
Eq. �13�,

−
3

2
Wa2


i=1

n
�

�ui
·� �2û�si�

�si
2 �

j=1

n


„u j − û�sj�…� = −
3

2
Wa2


i=1

n
�

�ui
· � �2

�s̃2�û�s̃��
j=1

n


„u j − û�sj�…�

s̃=si

= −
3

2
Wa2


i=1

n
�

�ui
· � �2

�s̃2 � dvvFn+1�u1,s1, . . . ,un,sn,v, s̃;t�

s̃=si

. �14�

The other term, originating from the random force in Eq.
�13�, reflects the equilibrium properties of the system and,
thus, is determined by the equilibrium distribution function
Fn

�eq� only �“eq” stands for equilibrium—i.e., in the absence
of flow�. Under equilibrium conditions both terms must ex-
actly cancel each other which leads to the conclusion that the
CR contribution to Eq. �11� has the following explicit form
�16�:

¯−
3

2
Wa2


i=1

n
�

�ui
· � �2

�s̃2 � vv„Fn+1�. . . ,v, s̃;t�

− Fn+1
�eq��. . . ,v, s̃�…


s̃=si

. �15�

However, the Rouse motion does not preserve the constant

primitive path length. To retain its length during random
hops, the chain has to retract in the tube faster or slower than

prescribed in the DE theory where �̂=−K : ûû. Therefore, we

include this effect in the retraction rate �̂ and write

�̂�s,t� = − K:û�s,t�û�s,t� + �CR�s,t� , �16�

where �CR�s , t� describes retraction due to hopping of the
chain. Note the absence of a caret upon �CR—we assume it to

be a universal function for all the chains. The modified �̂, Eq.
�16�, should be used in Eq. �1� as well. It leads to an addi-
tional contribution to Eq. �11�:
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¯ + 

i=1

n ���
0

si

dx�CR�x�	 �Fn

�si
− �CR�si�

�

�ui
· �uiFn�
 .

�17�

The function �CR�s , t� is yet unknown—it will be calculated
from the “constant-segment-length” condition �û�s , t�2��1
further on. Note that in contrast with Milner et al. �13�, we

do not assume the retraction rate �̂�s , t� to be independent of
the position along the chain s. Instead, an analytical expres-
sion for it will be derived in Sec. III.

Finally, the CR rate W is determined self-consistently. As
pointed out above, the convective constraint release rate

WCCR is related to the retraction rate �̂. Indeed, every time a
chain retracts over a distance equal to tube diameter a, an
entanglement with another chain is destroyed. This leads to

WCCR = −
2CW

L
�

0

L/2

dx��̂�x,t�� , �18�

where, following Milner et al. �13�, we have introduced a
numerical constant CW. As explained elsewhere �12–14�, this
phenomenological coefficient can be interpreted as the recip-
rocal number of chains participating �on average� in one en-
tanglement. Thus, one expects CW�1. A concrete value of
the constant can be fixed based on the steady shear flow data
in the nonlinear regime �13,14�.

Independently of convection, thermal CR �TCR� takes
place due to reptation. The TCR rate WTCR is derived from
the same argument as Eq. �18� and reads

WTCR = CW
12

�2�d
. �19�

Hence, the total CR rate W present in Eq. �15� takes the form

W = CW� 12

�2�d
−

2

L
�

0

L/2

dx��̂�x,t��
 . �20�

C. Contour length fluctuations

Besides retraction, reptation, and constraint release, in-
cluded in Eqs. �11�, �15�, and �18�, yet another relaxation
mechanism is believed to be important. Its essence is in the
fast relaxation of the end portions of the primitive path: typi-
cally, about �Z segments, where Z=L /a is the total number
of entanglements per chain, can relax the stress �faster than
by reptation� due to fluctuations of the chain length �2�. This
process, called relaxation by contour length fluctuations
�CLF�, is especially important for the linear relaxation of
relatively short polymers, with Z�100. One of the conse-
quences of CLF is the phenomenological 3.4-power law for
the zero-shear viscosity �5,6� observed in experiment,
whereas power 3 is predicted by the DE theory.

A rigorous incorporation of CLF into constitutive model-
ing is quite a formidable problem. However, an approximate
treatment �11,13,15� is possible if a term of the form
−�S�s�−S�eq��s�� /�CLF�s� is added to the relaxation equation
for a quantity S �which can be, e.g., an orientation tensor of
some other microscopic characteristic� with �CLF�s� being the
time needed to relax an “arm” of L /2− �s� segments by CLF.
This microscopic time can be borrowed from more detailed
theories of linear relaxation in star-polymer melts. Here we
use the result by Milner and McLeish �19�,

�CLF�s� =

�early�1 −
2�s�
L
	exp�3Z

4
�1 −

2�s�
L
	2


1 + exp�3Z

4
�1 −

2�s�
L
	2
�early�1 −

2�s�
L
	� �late�1 −

2�s�
L
	 , �21�

where

�early�x� =
3�3

16
Z�d� x

4
	4

, �22�

�late�x� =
�d

12Z
e3Zx2/4. �23�

One also has to notice that the n-point distribution function
Fn�u1 ,s1 , . . . ,un ,sn ; t� “has relaxed” when the “fastest”—i.e.,
the closest to one of the ends—segment maxi=1,. . .,n��si�� has
relaxed. This furnishes for an additional term in Eq. �11� due
to CLF:

¯−
Fn − Fn

�eq�

�CLF�maxi=1,. . .,n�si��
. �24�

Apart from a faster relaxation of the chain ends, the pres-
ence of CLF also influences the thermal constraint release
rate. Indeed, an effective disengagement time can be intro-
duced �2�:

�d
�eff� = �d�1 − �d�2, �25�

taking into account that a �d fraction of the primitive path
relaxes faster than it would by reptation and, effectively, the
tube from which the chain should escape has the length of
L�1−�d�. The portion �d is obtained from an equality �d�1
−�d�=�early��d� �see �6� for more details�. The latter equation
for �d can be solved numerically. However, for practical pur-
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poses, its approximate solution in the form of a perturbative
series with 1/Z as a small parameter,

�d =
4

�3�3Z�1/4�1 −
2

�3�3Z�1/4 +
2

�3�3Z�1/2 + ¯ 
 ,

�26�

is indistinguishable from the exact numerical one even for
Z=10. To consider the effect of the tube shortening on the
TCR rate, we substitute �d

eff, Eq. �25�, instead of �d in Eq.
�19�—this enhances the TCR rate, especially for relatively
short chains, as expected. Then, the final expression for the
constraint release rate reads

W = CW� 12

�2�d�1 − �d�2 −
2

L
�

0

L/2

dx��̂�x,t��
 , �27�

where �d is given by Eq. �26�.
To summarize, the set of equations �11� with additional

terms �15�, �17�, and �24� forms the basis for studying the
dynamics of linear entangled polymers. They describe relax-
ation due to reptation, retraction, constraint release, and con-
tour length fluctuations and take into account correlations
along the chain which may become important due to the
possible orientation of a primitive path under flow condi-
tions. To complete the system, the CR rate W is calculated
self-consistently in Eq. �27�. Moreover, the set �11� should be
solved under an additional condition of a constant segmental
length �û�s , t�2�=�duu2F1�u ,s ; t��1, from which the yet
unknown function �CR�s , t� can be obtained.

III. RESULTS AND DISCUSSION

The set of equations for the Fn’s, derived in the previous
section, is quite general. However, its complex structure
makes it hardly tractable. Indeed, to solve an equation for Fn,
one requires knowledge of Fn+1 and so forth. Of course, a
physical cutoff should be applied at n=Z, but as far as one is
typically interested in Z�10, it does not simplify the task. A
somewhat similar problem, involving a chain of distribution
functions, is encountered in the statistical physics of fluids
where the famous BBGKY set of equations for the density
distribution functions is quite well studied �18�. To solve it,
one generally introduces some approximation based on a
physical assumption that the �n+1�th-order function can be
expressed in terms of the previous ones. Such an approxima-
tion, called a closure, allows one to derive a much simpler
set of equations, restricted to a small number �typically, one
or two� of distribution functions: e.g., the well-known Kirk-
wood’s superposition approximation generates an equation
for the pair correlation function.

In what follows, we show that an analogous approach can
be employed in our situation as well. Simple closure ap-
proximations for the higher-order distribution functions will
be demonstrated to yield some existing models and shed
some light on the connection between them. In some cases, a
more detailed consideration allows one to avoid the unnec-
essary approximations often encountered in the literature.

A. “One-point” closure approximation and the DE theory

As has been pointed out already, one of the assumptions
in the DE theory is the independence of the orientation of
different segments along the primitive path. In the language
of the probability distribution functions, it means that a one-
point function F1�u ,s ; t� is enough for a complete descrip-
tion of the system and all the higher-order functions can be
expressed as products of one-point contributions. In particu-
lar, F2 is written as F2�u1 ,s1 ,u2 ,s2 ; t�
=F1�u1 ,s1 ; t�F1�u2 ,s2 ; t�. Using this closure approximation,
the last term in Eq. �11� for n=1 reduces to

−
�

�s
�

0

s

dx� dv�K:vv�F1�u,s;t�F1�v,x;t�

= −
�

�s�F1�u,s;t��
0

s

dx�K:û�x,t�û�x,t��

and Eq. �11� gives

�F1

�t
= �Dc

�2

�s2 − �
0

s

dx�K:û�x�û�x��
�

�s
F1

+
�

�u
· �u�K:uu�F1 − K · uF1�

+ ��K:uu� − �K:û�s�û�s���F1, �28�

which exactly coincides with the DE equation without inde-
pendent alignment �2�. Note that we did not include the CR
and CLF terms because they were not present in the original
treatment by Doi and Edwards �2�. As will be shown further
on, constraint release included in the “one-point” formalism
leads to a constitutive equation similar to the one obtained by
Ianniruberto and Marrucci �10�.

B. “Two-point” closure approximation

To go beyond the simple one-point approximation, one
has to consider closures involving higher-order distribution
functions—e.g., F2. The two-point distribution function not
only contains information about the orientation of a primitive
path segment but also allows one to estimate how important
the effect of the flow-induced orientation correlations is. Tra-
ditionally, predicting rheological properties, one would focus
on the orientation tensor S�s , t���û�s , t�û�s , t��. However,
knowledge of the two-point distribution function F2 allows
for a more detailed description based on a more general two-
point correlator �G�s1 ,s2 ; t����û�s1 , t�û�s2 , t��. Computa-
tionally, it is much simpler to work with G than with F2 itself
because G is a function of scalar arguments. Therefore, in the
rest of this section, we shall mainly focus on an equation of
motion for this correlation tensor.

An evolution equation for G can be readily obtained from
the one for F2 using the definition G�s1 ,s2 ; t�
=�du1�du2u1u2F2�u1 ,s1 ,u2 ,s2 ; t�. Omitting the algebra, we
just highlight the most important steps of the derivation. A
typical term from the CR contribution �15�, taken at n=2,
yields
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−
3Wa2

2
� du1� du2u1u2

�

�u1
· � �2

�s̃2 � dvvF3�u1,s1,u2,s2,v, s̃�

s̃=s1

=
3Wa2

2
� �2

�s̃2 � du1� du2� dvF3v ·
�

�u1
· u1u2


s̃=s1

=
3Wa2

2

�2

�s1
2G�s1,s2;t� , �29�

where additionally the identity F2=�du3F3 has been used.
Next, the last term in Eq. �11�, which in the case n=2 con-
tains F3, needs some special attention: a closure approxima-
tion has to be introduced to express F3 in terms of F1 and F2.
The simplest approximate reduction, fulfilling the symmetry
condition and the above-mentioned identity, reads as

F3�A1,A2,A3� = F1�A1�F1�A2�F1�A3� + 

��i,j,k��

�F2�Ai,Aj�

− F1�Ai�F1�Aj��F1�Ak� , �30�

where Ai denotes a pair ui ,si and the summation is conducted
over a cyclic permutation of the indices ��i , j ,k��
���1,2 ,3� , �2,3 ,1� , �3,1 ,2��. The physical meaning of Eq.
�30� is clear: it implies that all three-point correlations can be
approximated as a combination of one- and two-point terms
and all irreducible three-point contributions are neglected.
Such an approximation �30� allows one to obtain a closed
equation for F2 or, equivalently, for G, which after some
algebra leads to

�G

�t
= Dc� �

�s1
+

�

�s2
	2

G + K · G + G · KT − �K:G�s1,s1;t�

+ K:G�s2,s2;t��G + 

i=1,2

��CR�si�G

− ��
0

si

dx�K:G�x,x;t� − �CR�x��	 �G

�si

 +

3Wa2

2
� �2

�s1
2

+
�2

�s2
2	�G − G�eq�� −

G − G�eq�

�CLF�maxi=1,. . .,n�si��
, �31�

where the arguments of G are �s1 ,s2 ; t� if not indicated oth-
erwise. Equation �31� is strikingly similar to the one by Mil-
ner et al. �13�. However, in the present approach, it results
from a well-defined approximation to a more general formal-
ism which allows one to avoid unnecessary simplifications:
e.g., we did not assume the retraction rate to be constant and
explicitly separated its component �CR due to CR.

The equation of motion �31� is a nonlinear partial integro-
differential equation for G. Its equilibrium solution �no flow�
G�eq��s1 ,s2� is an isotropic tensor depending only on the dis-
tance between s1 and s2:

G�eq��s1,s2� =
I

3
��s1 − s2� , �32�

where ��x� is a positive bell-shaped function with maximum
�max=1 at xmax=0 and width proportional to the correlation

length at equilibrium—i.e., the segment size a. The specific
shape of the function �, as numerical results show, is not of
a crucial importance if the conditions ��0�=1 and
lima→0��s� /a=
�s� are fulfilled. For convenience, we take

��x� = exp�− �
x2

a2	 . �33�

Also, boundary conditions on the rectangle −L /2�s1,2
�L /2 should complement Eq. �31�. Assuming that the ends
of a chain are always relaxed, we use the condition

�G�s1,s2;t��boundary = �G�eq��s1,s2��boundary. �34�

As also discussed in �13�, it is impossible to reduce Eq.
�31� to a more restricted characteristic than G. This complex-
ity arises because the reptative diffusion acts along the diag-
onal lines s1−s2=const whereas CR acts isotropically. How-
ever, it is still useful to rewrite Eq. �31� in more “natural”
coordinates

v =
s1 + s2

2
, w = s1 − s2. �35�

After some trivial algebra, the result reads

�G̃

�t
= Dc

�2G̃

�v2 + K · G̃ + G̃ · KT − �K:G̃�v + w/2,0;t� + K:G̃�v

− w/2,0;t��G̃ − ��
0

v+w/2

dx�K:G̃�x,0;t� − �CR�x��

��1

2

�G̃

�v
+

�G̃

�w
	 + �CR�v + w/2�G̃

− ��
0

v−w/2

dx�K:G̃�x,0;t� − �CR�x��
�1

2

�G̃

�v
−

�G̃

�w
	

+ �CR�v − w/2�G̃ +
3Wa2

2
�1

2

�2

�v2 + 2
�2

�w2	�G̃�v,w;t�

− G̃�eq��w�� −
G̃ − G̃�eq�

�CLF
, �36�

where the new tensor G̃�v ,w ; t�=G�s1 ,s2 ; t� has been intro-
duced. The last equation demonstrates clearly that the prob-
lem without CR can be easily reduced to the one of finding

the orientation tensor S�v , t�= G̃�v ,0 ; t� by taking w=0 in
Eq. �36�. However, the presence of the isotropic CR term
complicates things and results in the following equation for
S:
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�S

�t
= �Dc +

3Wa2

4
	 �2S

�s2 + K · S + S · KT − 2�K:S�S − ��
0

s

dx�K:S�x,t� − �CR�x��
 �S

�s
+ 2�CR�s�S −

S − I/3

�CLF

+ 3Wa2� �2
„G̃�s,w;t� − G̃�eq��w�…

�w2 

w=0

. �37�

At this point the unknown function �CR�x , t� can be calculated. We recall that �CR governs the additional retraction rate to
compensate the stretching due to CR and enforce the condition TrS�s , t���û�s , t�2�=1. Taking the trace of Eq. �37� and using
the definition of the CR rate �27�, one obtains

�CR�s,t� = −

3CWa2X�s,t��6/��2�d�1 − �d�2� + �
0

L/2

dxK:G̃�x,0�/L

1 − 3CWa2�

0

L/2

dxX�x,t�/L
, �38�

where X�s , t����2Tr�G̃�s ,w ; t�− G̃�eq��w , t�� /�w2�w=0. Hence,
Eq. �37� allows one to derive the retraction rate due to CR in
a simple explicit form and avoid some of the assumptions
used in �13�. This expression for �CR, substituted into Eq.
�36�, turns it into a closed equation for the correlation tensor

G̃.

1. Limiting case of a one-point theory with CR

Rigorously, it is impossible to reduce Eq. �37� to a closed
equation for S�s ; t���û�s , t�û�s , t��. Despite this fact, a lot of
theories �8–10,15� �for the sake of shortness we shall call
them “one-point theories” further on� succeeded in incorpo-
rating the �C�CR process in the equation of motion for S:
they modified the relaxation time � by adding some convec-
tive term proportional to K :S or, in other words, to the hop-
ping rate W:

1

�
�

1

�d
+ W . �39�

However, the two addends in Eq. �39� act on absolutely dif-
ferent scales: the reptation time is a characteristic relaxation
time of the whole chain whereas 1/W is the lifetime of one
constraint and is local. So one could expect �20� the appear-
ance of the large-scale relaxation time Z2 /W instead of 1/W
in Eq. �39�. However, this would make the CR effect negli-
gible �in monodisperse melts, in comparison to reptation�
and would not improve the predictions of the rheological
behavior in nonlinear flows as compared to the original DE
theory.

To summarize, although in practice Eq. �39� leads to sat-
isfactory results �see, e.g., �8,9,15��, from the theoretical
point of view it does not directly agree with the expectation
raised by the molecular picture of the process. Correspond-
ingly, it is the goal of the present section to show why a
relaxation time like that of Eq. �39� can be used and gives
quite accurate results.

It is clear that Eq. �37� obtained for S is not closed: it still

includes a derivative of the tensor G̃ in the last term. To

proceed, we recall that one of the essential assumptions made
in the one-point theories is that correlations decay on the
length scale of a even in the presence of a flow. This implies
an ansatz of the form

G̃�v,w� � S�v���w� , �40�

where ��w� is the function introduced earlier which de-
scribes correlations in the equilibrium state �see Eq. �32��. In
essence, an assumption like Eq. �40� implies that correlations
under flow conditions are the same as in equilibrium. Using
the ansatz �40� and taking the Gaussian form for ��w�, Eq.
�33�, one may transform Eq. �37� into the closed form

�S�s,t�
�t

= �Dc +
3Wa2

4
	 �2S

�s2 − 6�W�S −
I

3
	 + K · S + S · KT

− 2�K:S�S − ��
0

s

dxK:S�x,t�
 �S

�s
−

S − I/3

�CLF�s�
. �41�

Let us discuss the result �41� briefly. The influence of the
CCR part that acts in “parallel” to reptation �see the first
brackets on the RHS� is negligible as far as Dc
Wa2 /2.
However, the remaining part originating from the
w-coordinate contribution is important. The effective relax-
ation time � calculated on the basis of Eq. �41� reads 1/�
��Dc+Wa2 /2� /L2+6�W�1/�d+W �we omitted the small
term Wa2 /L2� and corresponds to the relation �39�, which is
taken in the one-point theories for granted. Note that the
important CR term −6�W�S−I /3� appeared not due to some
one-mode approximation �cf. �21��—S�s , t� is still a function
of the position along the chain—but as a consequence of the
assumption that each segment undergoes Rouse motion per-
pendicular to the primitive path independently of the neigh-
boring segments. This type of motion resembles orientational
diffusion experienced by each segment independently of the
others �22�. Naturally, the relaxation time of such a process is
of the order of the constraint removal time 1/W supporting
Eq. �39�. In contrast, the time needed to renew the confor-
mation by translational diffusion �due to CCR� is Z2 times
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longer; this process acts in the same way as reptation does
and leads to a negligible correction.

2. Numerical analysis

Equation �36� together with the initial and boundary con-
ditions and Eqs. �27� and �38� for the constraint release rate
form a closed system, which can be solved numerically. Tra-
ditionally, one would determine the model parameters, such
as �d, etc., based on some available rheological data set and
discuss the quality of the fit obtained. We however pursue a
different goal. Rather than fitting the data, we would like to
discuss the influence that one or another approximation has
on the predictions. In this respect, the formalism presented
here allows one to compare the effects the different assump-
tions lead to: e.g., predictions in the “one-point” limit �41�
can be confronted with the ones given by a more general
“two-point” approximation �36�. We believe such a compari-
son sheds some light on the relation between the known
theories �8–15� and the assumptions they are based on.

All the numerical results presented below are obtained by
a real-space solution of the corresponding partial differential
equation �e.g., Eq. �41� or �36�� by a finite-difference scheme
�23�. For a cross-check, both explicit and Peacem-Rachford
alternating direction implicit methods have been tested to
give the same results. The function ��x� in the initial condi-
tion �32� has been chosen as in Eq. �33�. Alternatively, as
proposed in �14�, the function

��x� = �0, �x� � a/2,

1, �x� � a/2,
�

could be used—for all the results presented here it yields the
same predictions.

a. Transient and steady shear flows.
Transient behavior of the system in a shear flow is similar

to the one predicted by Milner, McLeish, and Likhtman
�MML� �13�. The stress component �xy shows overshoots for
flows with rates higher than 1/�d, whereas, because no chain
stretch has been included into the model, overshoots are
never observed for the first normal stress difference �xx

−�yy. Integrating the equations for a startup of a simple shear
for a sufficiently long time, one enters the steady-state re-
gime. The quantities of interest here apparently include the
steady-state stresses as functions of the shear rate and the
extinction angle. As is well known, the Doi-Edwards theory
�2,11,24� fails to reproduce certain features of these curves.
In particular, the predicted nonmonotonicity of �xy as a func-
tion of �̇ is one of the edge stones of both the DE and Doi,
Edwards, Marrucci, and Grizzuti �DEMG� �7� theories. Con-
straint release is known to remove this problem
�8,9,11–13�.

Indeed, as seen from Fig. 2�a�, for CW=0, corresponding
to the absence of CR, the shear stress reaches a maximum at
approximately �̇=1/�d, as expected. While increasing CW,
the maximum first becomes less pronounced and finally dis-
appears at CW close to 0.1. This provides a good estimate for
CW which we shall use further on. It is also clear that CCR is
mainly active in nonlinear flows with a rate larger than the

inverse reptation time: for values �̇�d�1 the curves in Fig.
2�a� are almost indistinguishable.

The more realistic behavior of the theory in the presence
of constraint release is a consequence of its qualitatively ac-
curate prediction of the extinction angle �. To compare the
degree of the chain orientation with and without CR we plot-
ted � as a function of the shear rate for CW=0 and CW=0.1,
inset in Fig. 2�a�. A too rapid drop of the angle between the
dominant principal axis of the stress tensor and the direction
of the flow is known �11� to be one of the disadvantages of
the DE theory. Figure 2�a� shows that constraint release
eliminates this flaw and, for �̇�d�1, leads to a less steep
curve. Moreover, it apparently approaches a limiting angle of
about 15°, in accordance with predictions by Milner et al.
�13�. Constraint release misaligns the tube and helps the flow
to hold a grasp on the chain. In contrast, without CR the
chain seems to be almost completely aligned with the flow
and the latter loses its grip—this yields the nonmonotonic
behavior of �xy��̇� never observed in experiments.

It is also worthy to compare the predictions of the “two-
point” approximation �31� to the ones of the “one-point”
limit �41�. The predicted steady stresses �xy are close to each
other, Fig. 2�b�. However, a nonvanishing systematic dis-
agreement in values of the first normal stress N1=�xx−�yy

clearly appears in the flows faster than 1/�d. Apparently, this
indicates that assumption �40� approximately holds for the xy
components but is very poor for the xx one. This is what one
can indeed expect: the chain becomes preferably oriented in

FIG. 2. �a� Steady-state shear stress �xy vs shear rate �̇: no CLF
is included, CW=0,0.01,0.05,0.1. For CW=0, as expected, a maxi-
mum around �̇�d�1 is observed. Inset: extinction angle � deter-
mined via the stress-optical law �=0.5 arctan�2�xy / ��xx−�yy��. �b�
Steady-state shear stresses �xy �thick lines� and N1 �thin lines� vs
shear rate �̇ for CW=0.1. Solid lines correspond to Eq. �36�; dashed
lines represent a solution of Eq. �41� under the same conditions.
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the direction of the flow x and so the x components of the
tangent vectors at two different points along the chain cannot
be treated independently anymore. Additionally, we would
like to point out that the same flaw is expected to be present
in any theory that makes use of the assumption of a negligi-
bly small correlation length in a fast, or even moderate,
flow.

In Fig. 3 we compare the results of our approach to the
Doi-Edwards �2� and MML �13� models. For this purpose we
consider the predictions of all the models with �CW=0.1� or
without �CW=0� constraint release and in the absence of
CLF. We want to emphasize that CW=0 in our theory yields
exactly the DE model. This is not surprising: as has been
shown in Sec. III A, in the absence of CR, Eq. �11� for the
probability distribution function F1 coincides with the one by
Doi and Edwards �2�. In contrast, in the original work by
Milner et al. �13� the DE limit for CW=0 is reproduced only
qualitatively: there is a maximum in the stress-rate curve but
it shows up at too high rates—nearly at 100/�d �see Fig. 3 in
�13��. As has been claimed in �14�, this artifact is due to the
incorrect treatment of the 
 functions and the solution in the
Fourier space used in �12,13�. Apart from that, additional
error is brought by an oversimplified treatment of the retrac-
tion rate �16�: we remind that Milner et al. �13� assumed it to
be constant along the chain. To test the consequences of this
assumption alone, we solve the MML model in real space for
CW=0 and CW=0.1, Fig. 3. As is seen from Fig. 3, the wrong
position of the maximum in �12,13� indeed results from the
incorrect solution in Fourier space. However, the values of
the stress predicted by the real-space solution in the nonlin-
ear regime still differ by a factor of 2 from the ones by DE
�compare the curves �DE� and �MML CW=0�� and the
present work �compare �this work� and �MML CW=0.1��.
This discrepancy must be attributed to the oversimplification
in the treatment of the retraction rate. To illustrate that, we

note that the retraction velocity of the segment s in the ab-
sence of CR is given by �2�

Vr�s,t� = �
0

s

dxK:S�x,t� ,

which simplifies to Vr�s�= �̇�0
sdxSxy�x� for a steady shear

flow. A typical Vr�s� curve, presented in the inset to Fig. 3,
deviates quite significantly from the linear one assumed in
�13�. Hence, a general conclusion can be drawn: the unnec-
essary assumption about a constant retraction rate leads to an
error in the predictions of the stress at the shear rates where
the plateau region starts.

Finally, we address briefly the chain length dependence of
the steady-state viscosity, Fig. 4. For this purpose the time is
measured in units of �e—the Rouse time of one entanglement
strand—which does not depend on Z. The zero shear rate
viscosity ��0� scales as Z3.4 for relatively short chains. This
effect is achieved because of CLF which speeds up the re-
laxation of relatively short chains quite considerably. The
��0��Z3 behavior is approached asymptotically for chains
longer than 200 segment—a behavior also predicted in �5,6�
and other works.

b. Correlations along the chain under flow
conditions.

Besides the purely rheological properties addressed
above, the formalism allows us to check explicitly when the
correlations should be taken into account. As we have shown
before, Fig. 2�b�, even relatively large-scale rheological
properties are sensitive to the assumption of negligible cor-
relations. In what follows, we aim to test directly the influ-
ence of the flow on the correlation length along the
polymer.

Strictly speaking, it is impossible to define a correlation
length for a finite object rigorously: due to boundary effects,
the correlators of the type �û�s1 , t� · û�s2 , t�� will depend not
only on �s1−s2� but also on s1 and s2. Therefore, we address
the problem semiquantitatively and define the correlation
length ac as a decay length of the correlator �û�0, t� · û�s , t��

FIG. 3. Steady-state predictions for a chain of 20 segments
��MML CW=0� and �MML CW=0.1�� of the MML model �13�
solved in real space without CLF for the values of the CW coeffi-
cient equal to 0 and 0.1, respectively; �DE� of the Doi-Edwards
model and the present work for CW=0; and �this work CW=0.1� of
the present work without CLF for CW=0.1. Inset: dimensionless
retraction velocity for Z=20, �̇�d=1 as a function of the segment
position along the chain; s=0 corresponds to the center of the chain.
Solid line: retraction speed used in the present work. Dashed line: if
an assumption about linear dependence of Vr is made �13�.

FIG. 4. Steady state shear viscosity � vs shear rate �̇ �non-
dimentionalized by �e—the Rouse time of one entanglement seg-
ment� for CW=0.1 and Z=20,30,50,70,100. Inset: the zero-shear
viscosity scales as ��0��Z3.4 for Z�200 and as ��0��Z3 for Z
�200.
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upon steady-flow conditions. Apparently, because of Eq.
�32�, ac�a at the equilibrium, as expected. The evolution of
ac in the presence of flow is shown in Fig. 5.

As seen from Fig. 5, for relatively slow flows there is
essentially no difference between ac with or without CCR—
ac�a and chain segments can be treated as being indepen-
dent. However, in the “moderate-flow” regime �̇��d

−1,
where CCR is typically active, correlations for CW=0 grow
much more rapidly. It supports the fact that in the DE model
the chains become completely aligned with the flow. Con-
straint release changes the picture considerably—there are
still correlations present, but ac is several times smaller than
without CR. The above analysis leads to conclusions about
the validity regions of the models. E.g., the DE theory �2�,
which makes explicit use of the assumption about a small
correlation length, is not valid for the �̇�1/�d regime. Also
approximations of the type �41� are, strictly speaking, not
valid there—therefore the difference between the stress
curves shown in Fig. 2�b� is not surprising. In general, Fig. 5
signals that for �̇�d�1 correlations along the chain have to
be taken into account and approximations ignoring this fact
are doubtful.

IV. CONCLUDING REMARKS

In this paper we presented a framework allowing for a
consistent description of the correlation effects along a poly-

mer chain under flow conditions. The formalism is based on
the many-point probability distribution function Fn. The
equation of motion for Fn takes into account such relaxation
mechanisms as reptation, retraction, constraint release, and
contour length fluctuation.

It has been shown that some known models can be de-
rived from the general formalism and correspond to certain
closure approximations. E.g., the simplest one �28� gives the
Doi-Edwards equation for F1 without independent alignment
�2�. A somewhat more sophisticated closure �30� corresponds
to an improved version �31� of the MML theory �13�. In
principle, more complicated closure relations can be used to
take into account three- and more-point correlation func-
tions.

One of the main goals pursued in this work is the analysis
of the consequences of different assumptions widely used in
the literature but rarely supported by rigorous calculations.
Comparing the one- and two-point approximations, we show
that some rheological functions ��xy, steady-state viscosity,
etc.� are quite insensitive to the assumption about small cor-
relation lengths in the presence of flow, whereas others �nor-
mal stress difference, extinction angle, etc.� show a clear
sensitivity on this point. Also, a direct estimation of the cor-
relation length shows that it cannot be neglected in
moderate- or fast-flow regimes.

Apparently, the model proposed is not free of simplifying
assumptions. Apart from the shortcomings common to all
tube-based models, the absence of the stretch restricts the
model’s applicability to flows with rates up to the inverse
Rouse time. However, since for long polymers the Rouse
time is much smaller than �d, the model is still applicable to
the most interesting flow regimes. Unfortunately, fast elon-
gational flows, where chain stretch plays a key role, are thus
outside the scope of the approach. It still remains a challenge
to incorporate stretch effects into the proposed formalism.
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